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Abstract— A local bundle adjustment is an important proce-
dure to improve the accuracy of a visual odometry solution.
However, it is computationally very expensive as it jointly
optimize all the poses of cameras and locations of map
points. To reduce the computational complexity of a local
bundle adjustment, the state-of-the-art algorithms [1],[2],[3]
were proposed to manipulate the map point variables, using
extra matrix operations, from their linearized optimization
solutions. Instead of relying on complex matrix manipulations,
this paper proposes a novel way of addressing this complexity
issue – we represent a map point as a function of two camera
poses, and uses the triangulated location of the map point
when needed. Our method is more efficient than ones in the
full-SLAM formulation in solving the visual odometry problem
in that 1) the complexity of our solution is lower than those
of the state-of-the-art methods, 2) no extra matrix operations
required to eliminate map points, 3) no need guesses on
map points’ initial locations. Experiemental results, through
simulated experiments and experiments with the KITTI dataset,
demonstrated that our results are more accurate than those of
a full-SLAM approach with lower runtime complexities.

I. INTRODUCTION

Visual odometry is a process of incrementally estimating
the pose (positions and orientations) of a camera by ana-
lyzing images over time. Typically, for those methods based
on features, it begins with extraction and matching of visual
features from a stream of images. Some of the visual features
are kept as map points in a 3d space based on their properties,
and the locations of the matched features between the images
are used to estimate the latest camera pose [4], [5], [6], [7].
Since this approach only processes consecutive images, the
estimated camera pose would quickly drift primarily due to
the accumulated errors from those local pose estimations.
To minimize such drifts, the state-of-the-art algorithms [8],
[9], [10] used a local or windowed bundle-adjustment to
more accurately solve a visual odometry problem in a “full-
SLAM” formulation where the poses of the camera (s)
and locations of the map points in the predefined window
are jointly estimated. By doing so, a new camera pose is
constrained by the map points which could be observed from
multiple previous poses. Thus, the local bundle adjustment
could considerably improve the long-term accuracy of a
visual odometry solution. However, at the same time, the
local bundle adjustment increases computational complexity
of a visual odometry solution primarily due to a joint
optimization of camera poses and map points. For example,
suppose that a local bundle-adjustment is used to estimate
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10 camera poses and up to 1,000 map points. The number
of variables to estimate is 3,060 (10 × 6 + 1, 000 × 3). As
the complexity of an optimization is typically O(N3) to
the number of variables [9], this bundle adjustment of 10
different camera poses and 1,000 map points is impractically
expensive. This complexity issue is a well-known challenge
to a large-scale visual SLAM or odometry tasks, and would
eventually limits the accuracy and applicability of a visual
odometry solution.

To deal with this computational complexity, the state-of-
the-art algorithms reformulate the problem to intentionally
relax a joint optimization of poses and map points. In
particular, the null-space trick was used to eliminate all the
map point variables from the linearized system for computing
EKF (extended Kalman filter) update [1] or for executing the
Gauss-Newton optimization [3]. By exploiting the fact of the
sparseness of the Jacobian matrix, the poses and map points
can be independently updated in a bundle adjustment [9].
However, as these approaches are formulated in a full-SLAM
problem where they have to exploit some matrix tricks in
order to reduce the dimension of the linearized problem, it
is required to have an initial guess of the 3D map point
locations for the linearization. This also requires extra map
point estimators to maintain an initial guess for map points
and results in increasing the complexity of implementation
as well. Moreover, the marginalization or separation of map
point variables requires extra matrix operations that will
be a substantial burden in tracking many map points. This
is because the computational cost of those extra matrix
operations is linearly proportional to the number of map
points.

To tackle the issue of high computational complexity
in a local bundle adjustment, this paper proposes a novel
way of eliminating map point variables in the full-SLAM
formulation. Our method uses a function of two camera poses
to triangulate a map point, instead of keeping the map point
as a part of state vector, and the triangulated location of the
map point when the location of the map point is required
for estimation. Our approach is “structureless” as the map
point locations are not used as a part of the state vector. By
representing map points in this way, our method can solve the
visual odometry problem in a full-SLAM formulation more
efficient than those of the state-of-the-art methods because
1) the complexity of our solution is a way lower than those
of the state-of-the-art methods, 2) no extra matrix operations
required to eliminate map points, 3) no need guesses on map
points’ initial locations, and lastly 4) our method is robust
to the measurement noises because it is not directly dealing
with noisy measurements about map points.
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In what follows, we will survey the related work first,
review the visual odometry formulation in the 3d space and a
typical, visual odometry solution using non-linear optimiza-
tion. And then we will detail our structureless approach to the
problem of visual odometry. We will then discuss the results
of simulated experiments and experiments with the KITTI
dataset to verify the usefulness of the proposed method.

II. RELATED WORKS

Visual odometry primarily concerns about the pose of a
camera based on image analysis. A typical approach to solve
visual odometry is to estimate the motion of a camera by
analyzing consecutive image frames [6] and estimate the
latest pose by accumulating the frame-to-frame motions. To
reduce the pose drift potentially introduced by the accu-
mulated motion errors, the keyframe-based approach was
proposed [8] where 1) selected images are stored and 2) a
local bundle adjustment is applied to do a batch-optimization
on the key-frame poses and map points in a bounded, local
sliding window. Images acquired on the fly are matched
to the saved map points to estimate camera motion. To
further reduce the pose drift, Mur-Artal and his colleagues
[10] did an additional loop closing step using a pose-graph
optimization. For these methods utilized the local bundle
adjustment [8], [10], the underlying assumption is that the
first camera pose in the sliding window is fixed and drops
the visual measurements older than that pose. Leutenegger
and his colleagues [14] remove the old poses using a
marginalization technique which preserves the previously
learned information as initial constraints to existing poses.
Even for the direct methods [15], where the frame-to-frame
motions are estimated without extracting point features, an
additional local bundle adjustment was still proven to be
effective for enhancing the odometry accuracy [16].

Although the local bundle adjustment processes only the
poses and map points observed in a bounded window, it
is still computationally expensive as it jointly optimizes
poses of camera and locations of features. To reduce time
complexity, Lourakis and Argyros [9] proposed the sparse
bundle adjustment (SBA) that utilizes the Schur comple-
ment to convert the original linearized optimization problem
Ax = b into two separated linear solvers by representing
the solvers of poses and map points separately. Because of
the sparse nature of the Jacobian matrix A in the visual
SLAM problem, the SBA solver is much more efficient
than the typical joint optimization. Another way of dealing
with this computational complexity issue is to apply the
null-space trick, which cancels out the map point variables
by projecting the linearized system to the null space of
the map point Jacobian matrix. This null-space trick can
be applied in both the filtering framework [1] and non-
linear optimization framework [3]. This series of research
work has greatly advanced the progress of the visual SLAM
and odometry. However, there are still some drawbacks.
Firstly, these approaches still formulate solutions in a full-
SLAM setup where an initial estimation of the map points
is required. Such an initial estimation requires stereo, RGB-

D sensors, or extra map point trackers [17] to estimate the
map point’s depth. Secondly, those matrix tricks like the
Schur complement or the null-space computation of the large
Jacobian matrices will introduce extra computational com-
plexity. Third, the null-space trick does not always guarantee
an accurate result because of the linearization errors in the
Jacobain matrices [2].

This paper proposes a remedy that accelerates and simpli-
fies the bundle adjustment process of a full-SLAM formu-
lation. The proposed method is based on key-frames with a
local bundle adjustment, but the local bundle adjustment is
done differently – a map point variable will be substituted
by a point triangulation from a pair of camera poses and
measurements from monocular cameras. By doing so, the
map point variables are no longer being kept at the original,
non-linear cost function as the state vector does not include
map points as state variables. This also eliminates a need of
extra map, point trackers or any matrix tricks to lightly solve
the linearized, optimization problem.

III. ALGORITHM

The goal of this work is to develop a way of reducing the
computational complexity of a local bundle adjustment for
a visual odometry solution. The pipeline of a typical visual
odometry solution, based on a feature tracking, begins with
extracting visual features, matching the extracted features to
the previously surveyed features, estimating the current cam-
era poses based on the matched results, and lastly executing
a local bundle adjustment over a sliding window to jointly
optimize camera poses and map points. For such a frame-
work, the local bundle adjustment is clearly a bottleneck
for any practical solution [9] primarily because the runtime
complexity of a local bundle-adjustment is dependent upon
the dimension of the state to estimate. To tackle this high
complexity operation, we propose a novel visual odometry
solution where we use two camera poses1 to represent the
position of a map point, instead of keeping it as a state
variable. This section details our structureless approach to
solve the visual odometry problem. In particular, we will
first review a full-SLAM formulation for solving the visual
odometry in the nonlinear least square using optimization
algorithms. And then we will explain how to reformulate
the objective function in a structureless manner.

A. A Formulation of Visual Odometry Problem

Given a stochastic observation zi, the SLAM problem
including visual odometry can be formulated to find the
maximum a posterior (MAP) of a unknown state x [11],[13]:

x∗ = argmax
x

p(x|x0)
∏
i

p(zi|x) (1)

where x is a vector of the state variables to estimate, x0 is
the initial guess about the state, and zi is the ith observation.

1We could use more than two camera poses to represent a map point, but
for this paper, we will use just two poses because the solution with more
than two poses needs more complex error function and the Jacobian for a
nonliear least square problem.
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Fig. 1. Our measurement model is a stereo, perspective transformation of
a 3d map point onto the left and right image planes, (uL, uR, v).

And p(zi|x) is the likelihood of a measurement zi given the
state x and p(x|x0) is the prior distribution of x given the
initial guess x0. Assuming that the underlying distributions
are Gaussian: p(zi|x) ∼ N(hi(x),Σz,i) and p(x|x0) ∼
N(x0,Σx0

), one can compute a solution of the maximum
a posterior in the least square sense:

argmax
x

p(x|x0)
∏
i

p(zi|x) =

argmax
x

exp(−‖x− x0‖2Σx0
)
∏
i

exp(−‖zi − hi(x)‖2Σz,i
) =

argmin
x

‖x− x0‖2Σx0
+
∑
i

‖zi − hi(x)‖2Σz,i

(2)

where ‖x‖2Σ = xTΣ−1x. For a typical state estimation
problem including visual odometry, the state vector x is
a collection of variables about the camera poses and map
point locations in a predefined reference frame. For a visual
SLAM, the measurement model hi(x) is typically defined
as a projection of a 3d map point onto a stereo/monocular
image coordinate. For the formulation of our approach, we
define the 3d points and its coordinates as follows:

pA : A 3d point p in coordinate A.
TBA : A transformation of a point from coordinate A to B.
RBA : The rotation matrix of TBA .
tBA : The translation vector of TBA .
ωBA : The axis-angle representation of RBA .

With these definitions, we denote a state for the full-SLAM
framework as x = (TW1 , TW2 , ..., TWN , pW1 , pW2 , ..., pWM ),
where TWi = (RBA , t

B
A) is a transformation of the ith camera

pose in a local coordinate to a world coordinate W and
pWj is the jth map point of a world coordinate. In this
work, we use a stereo projection function as a measurement
model hi(x). Figure 1 illustrates our measurement model
where a 3d point (or map point) is, through the perspective
transformation, projected onto two camera coordinates.
To be more specific, given the stereo camera intrinsic
parameters (fx, fy, cx, cy), the stereo camera baseline b, and
a left camera pose TWi , we define our measurement model,
hi(x), as a stereo projection function StereoProj(TWi , pW )

of a 3d point pWj :[
xij yij zij

]T
= RWi

T
(pWj − tWi )

uL = fx
xij
zij

+ cx

uR = fx
xij − b
zij

+ cx

v = fy
yij
zij

+ cy

(3)

where the resulting image coordinates, [uL, uR, v]
T

= zi,j
is used as a measurement from stereo. With this definition
of a measurement model, we can roll out Equation 2 as it
iterates all the observations over all the camera poses to map
point pairs:

argmin
x

‖x− x0‖2Σx0
+
∑
i,j

‖zi,j − hi,j(x)‖2Σz,i,j
(4)

One can use any optimization algorithms like the Levenberg
Marquardt [18] to iteratively solve this nonlinear least square
problem. To derive an iterative optimization solution of
the MAP formulation in Equation 2, we first rewrite the
likelihood function as a quadratic residual function ri(x) in
a matrix form:

argmin
x

∑
i

ri(zi, hi(x))TΣ−1
i ri(zi, hi(x)) (5)

where the ri(zi, hi(x)) is a differentiable residual function
about the difference between the measurement zi and a
predicted measurement by the measurement model hi(x),
and Σi is the covariance of the ith residual. A typical way of
solving such a nonlinear least square problem is to linearize
it first and then iteratively find an optimal value. To linearly
approximate Equation 5, we only use the first two terms of
the Tylor expansion:

ri(zi, hi(x
∗)) ' ri(zi, hi(x̃)) + Jiδx, Ji =

∂ri
∂x |x=x̃

(6)

By rewriting Equation 5 with the linearization result, we will
get a quadratic function to optimize:

(ri(x̃) + Jiδx)TΣ−1
i (ri(x̃) + Jiδx) =

ri(x̃)TΣ−1
i ri(x̃) + 2ri(x̃)TΣ−1

i Jiδx+ δxTJTi Σ−1
i Jiδx

(7)

As the minimal value of a quadratic function is obtained
when its gradient (i.e., Jacobian) is set to zero, we will have
the following inhomogeneous linear system by taking the
first-order derivative of the above equation to be zero:

Aδx = b, A =
∑
i

JTi Σ−1
i Ji, b = −

∑
i

JTi Σ−1
i ri (8)

Now we have a way of computing the optimal value x∗

using its delta state δx. In summary, we seek for the optimal
value of x by iteratively computing x∗ = x̃+ δx where x̃ is
the current estimate and δx is an incremental update. This
update is repeated until the summed square residual error is
smaller than a predefined threshold or the maximum iteration
number is reached.
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B. A Structureless Approach to Visual Odometry

Solving the linear system Aδx = b in Equation 8 is an
essential step in a local bundle adjustment, but it is very
time-consuming and computationally expensive, particularly
when the state x is in a high dimension. The state vector in
most of the visual odometry solutions using a local bundle
adjustment is in high dimension. This motivates us to find a
more efficient way of solving this and leads to a structureless
approach. The underlying idea of our method is to represent
locations of map points using two camera poses, instead of
keeping them as state variables. By doing so, we can save the
space as much as | number of variables about map points × 3
| for the optimization. Specifically, given a stereo projection
of a 3d point as a measurement by Equation 3, instead of
keeping the location of a 3d point, pW , in the state vector,
we use two camera poses, TW1 and TW2 , observed that 3d
point, and the images coordinates of the 3d point’s projection
on two images, (uL,1, v1) and (uL,2, v2), to replace the map
point variable by a triangulated point, ˜pW :

p1 =
[
uL,1−cx

fx

v1−cy
fy

1
]T
,

p2 =
[
uL,2−cx

fx

v2−cy
fy

1
]T
,

˜pW = λ̃1(T 1
2 , p1, p2)RW1 p1 + tW1

(9)

where p1 and p2 are two measurements in the normalized
coordinate, and the λ̃1 is the depth of the point to be
triangulated, which is the solution of following least square
problem:

(λ̃1, λ̃2) = argmin
λ1,λ2

∥∥λ1p1 − (λ2R
1
2p2 + t12)

∥∥2
(10)

The least square solution of Equation 10 is:[
λ̃1 λ̃2

]T
= (ATA)−1AT t12, A =

[
p1 −R1

2p2

]
(11)

Note that it is difficult to deal with the matrix inverse
(ATA)−1 when to compute the analytic derivative of
the residual function. Luckily, ATA in this study is 2-
dimensional, and a 2-by-2 matrix inverse can be easily and
analytically computed. We can write a close-form solution
of λ1 after rewriting Equation 10 by 2-dimensional matrix
inverse:

λ̃1(T 1
2 , p1, p2) =

g(T 1
2 , p1, p2)

f(T 1
2 , p1, p2)

g(T 1
2 , p1, p2) = ‖p2‖ pT1 t12 − (pT1 R

1
2p2)(pT2 R

1
2
T
t12)

f(T 1
2 , p1, p2) = ‖p1‖ ‖p2‖ − (pT1 R

1
2p2)2

(12)

Putting these equations together, Equations 10 and 11, we
redefine the measurement model in equation 3:[

uL uR v
]T

= StereoProj(TWi , ˜pWj )

˜pWj = λ̃1(T 1
2 , pj,1, pj,2)RWj,1pj,1 + tWj,1

T 1
2 = TWj,1

−1
TWj,2

(13)

Equation 13 is about a new stereo measurement model based
on our structureless approach. This measurement model is

in the exact same formulation as Equation 3 except the
way of processing the map point variable pWj . The pWj
is now replaced with the triangulated point ˜pWj that is a
function of TWj,1 , T

W
j,2 , pj,1, pj,2. By doing so, we can remove

the variables about map points from the state vector. Note
that the TWj,1 , T

W
j,2 are chosen from the poses to optimize

TWi , i = 1, 2, ..., N and will be updated during the op-
timization process. Even though this measurement model
is defined over stereo camera, one can easily change it
with one from monocular camera by removing one of the
measurements, say uR. Comparing this with the conventional
full-SLAM formulation, instead of maintaining map point
as state variables, all we need to do is just to record two
poses for each map point pWj . Thus when one gets a new
monocular or stereo measurement from any pose TWi for the
map point pWj , the residual can be used to directly update
TWj,1 , T

W
j,2 , T

W
i , without having an extra variable for pWj .

Now we need to explain how two poses TWj,1 and TWj,2 are
chosen. We use the first and last poses as two camera pose
for triangulation. We choose these two poses to minimize
the triangulation error: The longer the baseline is, the more
accurate the triangulation computation is. In addition, to
avoid a numerically, unstable triangulation result, the relative
motion between two poses should not be parallel to the
direction between the camera and the map point. To measure
the numerical stability, we use a heuristic of checking how
much the triangulated depth is changed by one pixel. If a
pair of two poses is numerical unstable, we do not use it for
the optimization.

In comparison with the existing algorithms marginalizing
the map points using null space trick [1], [2], [3] or Schur
complement [9], the proposed method does not require an
initial guess of the 3d point pW because our method does
not consider the variables of map points as parts of the
formulation from the first place. Note that such a simplication
by not including map-points as a part of the state vector
does not sacrifice the accuracy of our method. We will later
discuss this in details at the Experiments.

C. Optimization on SE(3) manifolds

From the practical perspective, there is one fact we need to
clarify. The iterative solution x∗ = x̃+δx we derived earlier
for the non-linear optimization would not work smoothly for
visual SLAM/VO problems as it is. This is because the state
x about camera poses belonging to the SE(3) contains a
non-Euclidean part – the rotation matrix that belongs to the
SO(3). As the result, the output of an addition operation in
the iterative solution might not be in the SE(3). Thus, for
the Lie group manifolds like SO(3) elements, it is necessary
define a set of special operations to replace the addition
and subtraction. For example, one can convert a SO(3)
manifold to and from an Euclidean vector using exponential
and logarithmic map operations [19]:

ω ∈ <3, R ∈ SO(3)

R = exp(ω), ω = log(R)
(14)
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To change the representation of the state estimate x and the
increment δx, we also need to define the “retract” and “local”
functions to deal with element increment and decrement to
replace vector addition and subtraction:

x1 + x2 =⇒ x1 ⊕ x2

− x1 + x2 =⇒ x1 	 x2

(15)

By the exponential map operation, the retract and local
operations will satisfy the following properties:

exp(x1 ⊕ x2) = exp(x1)exp(x2)

exp(x1 	 x2) = exp(−x1)exp(x2)
(16)

Given this, one can define the Jacobian and the first-order
Taylor approximation of a function of the Lie group mani-
folds as:

J =
∂f(x⊕ δx)

∂δx |δx→0

f(x⊕ δx) ' f(x) + Jδx

(17)

To replace the equation 6, we define a generalized solution
for nonlinear least square in an iterative form:

δx = argmin
δx

∑
i

ri(yi, x̃⊕ δx)TΣ−1
i ri(yi, x̃⊕ δx)

ri(yi, x̃⊕ δx) ' ri(yi, x̃) + Jiδx, Ji =
∂ri(x⊕ δx)

∂δx |x=x̃

x∗ = x̃⊕ δx
(18)

For SE(3), we can define its special exp and log operations
[20] and deal with them in the same way, but it is not very
convenient because, to satisfy the equation 16, the vectorized
SE(3) has to be a “twist” representation. This is different
from the Euclidean translation where we used to compute the
structureless residual, and will make the Jacobian derivations
unnecessarily complex. Thus, in this paper, we define the
vectorized SE(3) in the following way:

x = (ω, t) ∈ <6, T = (R, t) ∈ SE(3)

T = (exp(ω), t), x = (log(R), t)
(19)

Since the vectorized SE(3) is directly represented as
a pair of the axis-angle for rotation and the Euclidean
for translation, its retract and local functions are just a
“stacked” version of SO(3) retract/local and Euclidean ad-
dition/subtraction:

x1 ⊕ x2 = (ω1 ⊕ ω2, t1 + t2)

x1 	 x2 = (ω1 	 ω2,−t1 + t2)
(20)

With the above definitions, the Jacobian of the estimated
point depth defined in equation 12, which is an essential
part of our structureless residual function, can be derived
with respect to the Euclidean translation. This is way more
straightforward than using SE(3) exp and log operations.

IV. EXPERIMENTS

To validate the usefulness of the proposed algorithm, we
conducted two kind of experiments: simulated experiments
and experiments with a real-world data, the KITTI data.
For a simulated experiment, as we can control the level
of challenge in the noises and ground truth, Section IV-A
is prepared to validate the underlying idea and verify the
expected results – the runtime complexity is more optimal
than that of a full-SLAM approach while the accuracy is
better or at least same as that of a full-SLAM approach. In
Section IV-B, we evaluate, using a real-world data – KITTI
data, the performance of our algorithm and compare it with
that of a full-SLAM approach.

A. Simulated Experiments
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Fig. 2. A setup for simulated experiments about camera poses and
landmarks. The red circles represent the ground truth of map-points’
locations and the blue stars depict the noisy initial guess of the camera
poses and map points. The center of the ground truth, camera poses are
also depicted by red circles.

In this section, we evaluate the performance of the pro-
posed structureless visual odometry algorithm using a sim-
ulated setup, and compare its performance with that of a
full-SLAM solver. Figure 2 shows a simulated setup where
landmarks in red circles are observed from three known cam-
era poses (i.e., ground truth). For each of the landmark-pose
pairs, we generate a stereo measurement (uL, uR, v) and
added random noises to each dimension of the measurement
where the noise is uniformly distributed from -3 to 3 pixels.
Then, camera poses with noisy offsets are generated as the
initial guess for the full-SLAM solver. The initial guess about
map point positions are triangulated by using the initial poses
and measurements. Then, both of the camera poses and map
points are estimated by two algorithms: our “structureless
solver” and “full-SLAM solver.” The proposed structureless
method does not optimize the map point positions, and thus
the map points are reconstructed later using an additional,
map-only bundle-adjustment (BA) solver where the camera
poses are treated as constants. We conduct two simulated
experiments. At the first experiment, we let the algorithms
use all of the available stereo measurements whereas, at
the second one, we only let algorithms use one of a stereo
measurement, uL, and hold the remaining one, uR. The first
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experiment is designed to see if our algorithm can achieve
the same accuracy as the full-SLAM solver does, with a
sufficient amount of measurements. The second experiment
is prepared to see how robust our algorithm is in handling a
problem of scale drifting mainly caused by insufficient and
noisy measurements.

Table I and Table II show the results of this compari-
son. We computed distances between algorithms’ outputs
and ground truths positions using the root-mean square to
measure the accuracy of algorithms, and the runtime. As
one can see, our method is more accurate than that of a
full-SLAM approach as the errors of our method is smaller
than those of a full-SLAM approach. For the comparison
of the runtime of Full-SLAM solver and our structureless
solver, the full-SLAM solver needs more than 5 seconds
to complete its optimization whereas the proposed approach
needs less than 3 seconds to reconstruct the camera poses and
the map points. At the last column of the table I, there are two
numbers about “computation time” of our approach: the first
number, e.g., 0.73, is for estimating camera poses and the
second number, e.g., 1.75, is for map point reconstruction.
Notice that our method only needs less than one second to
optimize the camera poses.
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(a) Optimization result using full-SLAM solver.
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(b) Optimization result using structureless solver and then
map-only solver.

Fig. 3. Simulation result using one of the stereo measurements.

For the second simulation where only one of the stereo
measurement is used, the structureless approach was not

only faster than the full-SLAM solver, but also shows better
accuracy on estimating the camera poses and reconstruct
the map points – the errors of our method is smaller
than those of a full-SLAM approach. We believe that the
reason a full-SLAM approach did not perform well is, when
there is not sufficient amount of measurements available,
estimating both camera poses and map points becomes a
loosely constrained problem and a solution based on a full-
SLAM formulation could overfit to the noisy measurements.
On the contrary, our structureless method is quite robust to
such noisy measurements because it does not keep the map
point as state variables from the first place. Our method
is not just better in numerical performance metrics, but
also offering the following benefits: 1) No need to estimate
positions of landmarks (e.g., in this simulation, it reduces
the state variables from 186 (3 poses and 56 map points)
to 18 (3 poses), 2) only one measurement (a part of a
stereo measurement) needed to make scale converge, and 3)
required number of measurements to converge is smaller than
that of a full-BA solver. Figure 3 particularly emphasizes the
benefit of 3) where there is only a few stereo measurements
available. For this example, the result by our structureless
approach converged well whereas that of the full-BA solver
had a large drift for the map points.

B. Experiments using KITTI data

The previous section, with simulated experiments, proved
the usefulness of the proposed algorithm. To be truly useful
for any practical applications, the proposed algorithm should
show an experimental result, experiments using real-world
data, similar to what we observed from simulated experi-
ments. Thus, in this section, we use a real-world data, the
KITTI dataset, to evaluate the performance of the proposed
structureless algorithm and compare its performance with
that of the full-SLAM solver. For this experiment, we used
an open source SLAM package, ORB-SLAM2 [21] that is
a visual SLAM package executing the following steps: 1)
extract visual features from current image, 2) match the
features from the current image to the previously tracked
map points which are 3d points with visual descriptors, 3)
compute the current camera pose using the matched results,
4) run a local bundle adjustment which jointly optimizes the
camera poses and map points over a sliding window, and 5)
detect and close the loop if a place is re-visited. The proposed
algorithm particularly focuses to improve the step 4), the
local bundle-adjustment step. Thus, in this experiment, we
depreciate the step 5) and use the steps 1), 2) and 3) from
the ORB-SLAM2. For the step 4), we compare the proposed
structureless algorithm with the solver in the ORB-SLAM2,
which is a full-SLAM solver implemented using g2o [22],
using the same camera trajectory initial guess, visual feature
matching results and the monocular/stereo measurements.

Figure 4 and 5 show the results of this experiment where
we computed the average of heading and position errors of
the optimized camera poses in each local bundle adjustment.
While computing these errors, we did not use the poses
in a global coordinate, but use the current poses relative
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TABLE I
SIMULATION RESULTS USING FULL STEREO MEASUREMENTS.

Orientation
RMSE (rad)

Translation
RMSE (m)

Landmark RMSE
(m)

Computation time (sec)

Full-SLAM 0.0050 0.0154 0.0492 5.16
Structureless 0.0037 0.0093 0.0456 2.48 (pose: 0.73, map points: 1.75)

TABLE II
SIMULATION RESULTS USING ONE OF THE STEREO MEASUREMENTS.

Orientation
RMSE (rad)

Translation
RMSE (m)

Landmark RMSE
(m)

Computation time (sec)

Full-SLAM 0.0057 0.0525 0.2293 5.88
Structureless 0.0045 0.0134 0.0631 2.86 (pose: 1.05, map points: 1.81)

(a) KITTI urban scene image.
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(b) KITTI result with full stereo measurements.
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(c) KITTI result with few stereo measurements.

Fig. 4. Experimental result on the KITTI urban scene.

(a) KITTI highway scene image.
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(b) KITTI result with full stereo measurements.
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(c) KITTI result with few stereo measurements.

Fig. 5. Experimental result on the KITTI highway scene.
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to the latest camera poses. This is because the estimated
poses in a global coordinate will drift due to the accumulated
visual odometry error unless the estimated pose is corrected
with other measurements like ones from a differential GPS.
Thus evaluating the error of relative poses enables us to
eliminate the error offsets caused by the intrinsic drift, and
make it straightforward to analyze the performances of these
local BAs. Like in the simulated experiments, we conducted
the experiments with the KITTI data in two ways: at one
setup, all of the available stereo measurements (and all
of the map points for the full-SLAM solver) are used to
estimate the camera poses and at another setup, we only
let the algorithms use at most one stereo measurement for
each tracked map point. The results were similar to those
of the simulated experiments in that our method is more
robust than the full-SLAM one in handling the case where
fewer stereo measurements are available. Furthermore, such
a merit of demonstrating better performance when only
fewer measurements are available, is indeed beneficial to the
scenario that the car is driving straight in a high speed, where
each map point could be only tracked over a very short period
of time because the appearance of images changes drastically
and quickly.

V. CONCLUSION

In this paper, we proposed a novel way of addressing the
computational complexity of a local bundle adjustment in
visual odometry solutions. Instead of keeping map points as
state variables, the proposed method represents a map point
as a function of two camera poses and uses the triangulated
location of the map point when required. Experimental
results showed that our method is not only accurate, but also
efficient than a full-SLAM method by offering three practical
benefits: 1) no need to estimate positions of landmarks,
2) monocular measurements are enough to make it scale
converged, and 3) required number of measurements to
converge is smaller than that of a full-SLAM approach.
Moreover, our method is robust to the measurement noises
because it is not directly processing noisy measurements of
map points.

As future work, we will apply the proposed algorithm to
the applications where computational resources are limited
like a task of visual-inertial odometry for mobile-platforms
such as consumer-grade drones.
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