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Abstract

Computer vision technologies are very attractive for
practical applications running on embedded systems. For
such applications, it is desirable for the deployed algo-
rithms to run in high-speed and require no offline training.
To develop a single-target tracking algorithm with these
properties, we propose an ensemble of the kernelized cor-
relation filters (KCF), we call it EnKCF. A committee of
KCFs is designed to specifically address the variations in
scale and translation of moving objects. To guarantee a
high-speed run-time performance, we deploy each of KCFs
in turn, instead of applying multiple KCFs to each frame al-
together. To reduce any potential drifts between individual
KCFs’ transition, we developed a particle filter. Experi-
mental results showed that 1) the performance of ours is,
on average, 70.10% for precision at 20 pixels, 53.00% for
success rate for the OTB100 data, and 54.50% and 40.2%
for the UAV123 data, and 2) our method is, on average,
better than other high-speed trackers over 5% on precision
on 20 pixels and 10-20% on AUC. In addition, our imple-
mentation ran at 340 fps for the OTB100 and at 416 fps
for the UAV123 dataset that is faster than DCF (333 fps)
for the OTB100 and KCF (296 fps) for the UAV123. To in-
crease flexibility of the proposed EnKCF running on various
platforms, we also explored different levels of deep convo-
lutional features.

1. Introduction

A recent advancement of air/ground/water unmanned ve-

hicle technologies has increased interests on deploying in-

telligent algorithms to existing mobile platforms. Among

those technologies, computer vision algorithms are get-

ting more attentions primarily because payloads of those

mobile platforms are limited to carry any other sensors

than a monocular camera. Instead of just manually be-

ing flew for video recording, an unmanned air vehicle

(UAV) equipped with an object or feature following func-

tion would make it more useful for the application of mon-

itoring/surveillance/surveying on private properties/wild-

life/crop, video recording on various events, many others.

To this end, in this paper, we propose a single-target track-

ing algorithm that does not require offline training and can

run at high-speed. Specifically, we would like to have our

algorithm 1) learn the appearance model of a target on the

fly and 2) run on a typical desktop as fast as 300-450 fps.

One of the dominant frameworks for online object track-

ing is the correlation filter that essentially solves a single-

target tracking problem as a regression problem in the fre-

quency domain. This method assumes that a target location

is given at the beginning like any other online tracking al-

gorithms [22]. Given this positive example for the regres-

sion problem, a set of negative examples is collected around

the initial target bounding box and represented as a form of

the circulant matrix [12]. One can optimally solve this re-

gression problem using a ridge regression in a closed form.

However, this solution has to deal with expensive matrix

operations O(n3). The correlation filter offers a less com-

plex solution,O(n log n) by element-wise multiplication in

a frequency domain [2, 12]. Thank to this reformulation,

an object tracking pipeline based on the correlation filter

can run very efficiently and be even easily implemented. In

fact, an extension of a linear correlation filter, the kernelized

correlation filter with multi-channel features [12] showed

impressive object tracking results and outperformed other

state-of-the-art, online tracking algorithms in terms of run-

time and tracking accuracy. However, a vanilla form of such

an online tracker is prone to drift, and fails to track a target

over a long period of time [12]. This is primarily due to

the dilemma of stability-plasticity in updating appearance

model, where the appearance model will be overfitted to

only the images used to train, unless a compromise on the

frequency of updating the model is carefully implemented

[20]. For example, one may handle a target’s scale variation

by just concatenating multiple correlation filters including

KCF and running them on each frame. Alternatively one

1133

2018 IEEE Winter Conference on Applications of Computer Vision

978-1-5386-4886-5/18/$31.00 ©2018 IEEE
DOI 10.1109/WACV.2018.00129



Boat6 = Fr_1

Boat6 = Fr_721

Boat9 = Fr_1

Boat9 = Fr_700

Car1_s= Fr_1

Car1_s= Fr_299

Person4_2= Fr_360

Person4_2= Fr_1560

Truck4_2 = Fr_1

Truck4_2 = Fr_653

UAV3 = Fr_1

UAV3 = Fr_119

Bike1 = Fr_1

Bike1 = Fr_2421

Figure 1: Examples of some tracking results (yellow rectangles) by the proposed method on the “UAV123” dataset. The

“UAV123” dataset is challenging for object tracking as the scale and translation of a target can be drastically changed in a

few consecutive frames.
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Figure 2: The workflow of the EnKCF. The first frame is used to initialize the tracking algorithm and a particle filter. For the

next six frames, each of three KCF is deployed in turn to estimate the translation and scale change of a target. Afterward, the

order of deploying three KCFs is repeating.

could think of scanning the region of interest (ROI) with a

list of templates in predefined scale ratios to find the tar-

get in appropriate scale [1, 12, 16, 18, 23]. However, these

approaches would drastically reduce run-time performance

because multiple KCFs run on each frame.

Another way of handling the scale change for the corre-

lation filter based approach is to estimate a correct scale at a

location where a target highly likely appears [26] – estimate

a target’s translation first and then estimate correct scale.

For example, Zhang and his colleagues used the MOSSE

tracker [2] to estimate the target’s translation. And then

their method updated the scale of the target by further ana-

lyzing image sub-regions in high confidence. Their method

is based on an assumption that the scale of a target would

not change drastically over two consecutive frames. Sim-

ilarly, Ma and his colleagues used two KCFs to learn the

translation and scale of a target separately [18]. In particu-

lar, a KCF is used to learn the translation of the target and

its background. Given this, another KCF is used to learn the

target area to estimate the new scale of the target. However,

because of running more than a KCF on each frame, this

method degrades its run-time performance (i.e., ≤ 50fps).

Our method is motivated by this idea – the idea of deploying

multiple KCFs to address the issues of single target tracking

the drastic variations in scale and translation, but in a more

efficient way. To maximize run-time performance and ac-

curacy, instead of running them all together on every frame,

we deploy three KCFs in turn: target+small background
translation filter (RS

t ), target-only scale filter (Rs) and tar-
get+large background translation filter (RL

t ). By doing so,

our method aims at effectively addressing scale change and

estimating target’s motion while maintaining run-time per-

formance at high-speed. Figure 2 illustrates the workflow

of the EnKCF.

The contribution of this paper is a novel, single-target

tracking algorithm running at a very high-speed (≥ 300
fps). In particular, to effectively address the changes in

scale and translation of a target, we extended the KCF and

deployed each of three KCFs in turn. Because of such a

deployment strategy, the run-time performance of the pro-

posed algorithm maintains high without sacrificing the ac-

curacy of tracking. To reduce any potential drifts while

switching KCFs, we developed a particle filter. Addition-

ally, to increase the flexibility of the proposed algorithm’s

usage, we explore deep convolutional features with varying

levels of abstraction.
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2. EnKCF: Ensemble of Kernelized Correla-
tion Filters

We propose a novel way of utilizing an ensemble of the

KCFs [12] to effectively handle scale variations and dy-

namic maneuvers of a target. To improve the run-time per-

formance and maintain the small-footprint of the original

KCF (e.g.,≥ 300), we deploy three KCFs in turn, instead of

applying them altogether on the same image frame. Each of

these KCFs is designed to address the challenges of single-

target tracking – variance in scale and translation.

The proposed algorithm, EnKCF, learns three KCFs in

turn: The first filter, RS
t , focuses on learning the target area

and its background for addressing a marginal translation of

a target, the second filter, Rs, focuses entirely on learning

the target’s scale, and the last filter, RL
t , focuses on the tar-

get area and its background bigger than that of the first filter,

RS
t . By designing EnKCF as a composite of three KCFs, a

transition filter with larger padding size, RL
t , will enable

EnKCF to recover from potential drifts after a scale filter,

Rs, is applied to the input images. Another translation filter

with smaller padding size, RS
t , will help EnKCF to better

localize the position of the target after the large ROI trans-

lation filter is applied. Our approach is similar to that of

[18] which sequentially applied more than one KCF to ev-

ery frame, but different in that we operate multiple KCFs

in an alternating manner. It is intuitive to alternate multiple

KCFs with different goals over a small temporal window

of the input image sequences, because the appearance of a

target does not change drastically over consecutive images.

In other words, for most cases, learning a correlation filter

over consecutive frames would not be substantially differ-

ent from the one updated with smaller frequency. Figure 3

shows examples supporting this observation.

The algorithm 1 shows the pseudo-code of EnKCF. The

order of running these three KCFs is important because each

of these filters aims at addressing different challenges of

single-target tracking. A translation filter, RL
t , is applied

to the ith and i+1th image frames, another translation fil-

ter, RS
t , is applied to the i+2th and i+3th image frames,

and then the scale filter, Rs, is applied to the i+4th image.

This order repeats until the last image of an input video is

presented. Note that the translation filter, RL
t , is intended

to run right after the scale filter, Rs, runs which is applied

at every other i+4 frames. We run these filters in this way

because we want to minimize any drifts that are likely to

happen running only Rs. In addition, the filter, RS
t , is ap-

plied to every other two frames before Rs and right after two

consecutive frames running RL
t . By repeating this order of

learning three KCFs, we can integrate more discriminating

shape features that cannot be learned just by RL
t . The filter,

RL
t , uses shape and color information together to recover

from any potential drifts – drifts could happen due to only

scale filter operation in certain frames.

In summary, the scale filter, Rs, is designed to directly

handle the scale change of a target and provides the trans-

lation filters, RL
t and RS

t , with more accurate ROIs. On the

other hand, a translation filter, RL
t , is devised to look into

a larger search area to estimate the target’s translation and

recover from any potential drifts. Another translation filter,

RS
t , is designed to address the drawback of RL

t that may

learn noisy shape features due to its relatively larger search

area. In what follows, we will brief the main idea behind

the KCF.

Kernelized Correlation Filter The Kernelized Correla-

tion Filter is a well-known single target tracking algorithm.

As its workflow has been detailed in other papers [11, 12],

in this section we briefly go over the parts of the KCF rel-

evant to this study. Its computational efficiency is derived

from the correlation filter framework representing training

examples as a circulant matrix. The fact that a circulant ma-

trix can be diagonalized by Discrete Fourier transform is the

key to reduce the complexity of any tracking method based

on correlation filter. The off-diagonal elements become zero

whereas the diagonal elements represent the eigenvalues of

the circulant matrix. The eigenvalues are equal to the DFT

transformation of the base sample (x) elements. The Ker-

nelized Correlation Filter, in particular, applies a kernel to

x to transform into a more discriminating domain. The

circulant matrix is then formed by applying cyclic shifts

on the kernelized x. Such kernelization operation main-

tainsO(nlog(n)) complexity unlike other kernel algorithms

leading to O(n2) or even higher complexities.

The KCF solves essentially the problem of a regression

in the form of the regularization (ridge regression):

Eh = min
h

1

2
||y −

C∑

c=1

hc ∗ xc||2 + λ

2

C∑

c=1

||hc||2 (1)

where we seek for h that minimizes E given the desired

continuous response, y, and the training template x. The

parameter c enables one to integrate features in the form

of multiple channels, such as HoG and color, in this setup

[9, 12]. To simplify the closed-form solution for Equation

1, an element-wise multiplication in frequency domain was

proposed to learn the frequency domain correspondence of

h, ŵ:

ŵ = x̂∗ ∗ ŷ(x̂∗ ∗ x̂+ λ)−1. (2)

Where ∗ is an element-wise multiplication. A non-linear

version of ŵ and α̂ are proposed to increase robustness to

any geometric and photometric variations [12]. In particu-

lar, the diagonalized non-linear Fourier domain dual form

solution is expressed as

α̂ = ŷ(k̂xx
′
+ λ)−1 (3)
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Algorithm 1: EnKCF Tracking Algorithm

Input: Initial bounding box (x0, y0, s0), frame counter fc, complete cycle of scale filter n = 5,

Output: if fc% n = 0 (Condition 1) then
Estimated Target State (xt, yt, st), Scale filter (target-only) model Rs

else if fc% n > 0 and fc% n ≤ n/2 (Condition 2) then
Estimated Target State (xt, yt, st = st−1), Large Area Translation Filter model RL

t

else Condition 3
Estimated Target State (xt, yt, st = st−1), Small Area Translation Filter model RS

t

1 function track(xt−1, yt−1, st−1)

2 // Translation Estimation - Particle Filter
3 Transit Particle Filter to the frame t and compute the mean of prior pdf (xt, yt, st−1)
4 // Translation Estimation - Correlation Filter
5 Crop the ROI for the RL

t (Condition 2), or RS
t (Condition 3) given (xt, yt) and estimate new position as (xt, yt) = max(yRt)

6 // Scale Estimation - Correlation Filter
7 Scale pool for Rs : S = {1.05, 1.0, 1/1.05},

8 Crop the ROI for the Ri
s (Condition 1) and estimate scale factor, α = argmax

i∈S
(PSR(yRi

s
)), and new scale st = α ∗ st−1,

9 // Update Translation - Particle Filter
10 Do Importance Re-sampling (if necessary) and compute the mean of posterior pdf (xt, yt)
11 // Model Update
12 Update RS

t (Condition 3),

13 Update RL
t (Condition 2),

14 if PSR(yRs) ≥ TRs then
15 Update Rs (Condition 1)

16 return (xt, yt, st)

Frame 300Frame 200Frame 100Frame 1 Frame 1200

Figure 3: These examples show that there is a marginal difference between the scale filters learned at every frame and the

one learned at every 5 frames. In each figure, the leftmost, sub-figures show the scale filters trained at every frame and those

at the rightmost show the scale filters trained at every 5 frames.

where λ represents the regularization weight whereas k̂xx
′

denotes the first row of the kernel matrix K known as gram
matrix and is expressed as

kxx
′
= exp(− 1

α2
(||x||2+ ||x′ ||2−2F−1(

C∑

c

x̂∗c� x̂
′
c))).

(4)

An earlier version based on this formulation used grayscale

feature (C = 1) to learn the solution vector w and integrat-

ing multi-channel features such as HoG and Color showed

improved accuracy [1, 9, 12, 18, 23]. In the detection step,

the learned correlation filter is correlated with the first row

of the gram matrix, kxz
′
, which contains the similarity val-

ues between the learned feature template x and the new test

template z. This can be formulated as

r(z) = F−1(k̂xz
′
� α̂) (5)

where r denotes the correlation response at all cyclic shifts

of the first row of the kernel matrix.

To integrate further temporal information into tracker,

we update the correlation filter and the appearance model

as below:

α̂t = (1− β)α̂t−1 + βα̂t (6)

x̂t = (1− β)x̂t−1 + βx̂t (7)

where β represents the learning rate tuned to a small value

in practice.

In the following sections, we will detail two different

types of features used in EnKCF: hand-crafted features

(fHoG + color-naming) and deep convolutional features.

EnKCF with Hand-Crafted Features We, first, use two

conventional hand-crafted features, fHoG (shape) [8] and

color-naming (color) [16]. Figure 4 shows examples of
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these features. This setup of the EnKCF is designed to de-

velop an online tracking algorithm running at high-speed (≥
300 fps) on a typical desktop (and eventually running ≥ 30
fps on a low-end embedded system without GPUs).

yRS
t

RS
t

HS
t

(fHoG, 96 X n template)

yRL
t

RL
t

HL
t

(fHoG + Color-naming, 96 X n template)
Rs

yRs

(fHoG + Color-
naming, 

64 X n template)

(a) Small area transla-

tion filter

(b) Large area translation

filter

(c) Scale

filter

Figure 4: Examples of three filters with hand-crafted fea-

tures. The responses by the large and small area translation

filters, and scale filter represented by yRL
t

, yRS
t

and yRs
.

We use both fHoG [8] and color-naming [24] for the

large area translation filter, RL
t . This is because the fHoG

tends to be noisier and less discriminating, when it is ap-

plied to relatively larger area, and adding color information

makes the feature vector for the translation filter more dis-

criminating. Figure 4 (b) shows an example of this trans-

lation filter. By contrast, the RS
t only uses the fHoG fea-

tures because it covers a relatively smaller area. Figure 4 (a)

shows an example of this translation filter. Lastly, we use

both fHoG and color-naming features again for the scale fil-

ter, Rs. By assigning fHoG and color-naming features, we

ensure that the likelihood of inaccurate scale estimation is

decreased in comparison to the scale filter with only fHoG

features. This is more important in our case as the scale

filter is operated in every 5 frames. Also, the scale filter,

explained earlier in the algorithm 1, estimates the scale of

a target by correlating it with three candidate ROIs. This

search may increase the run-time complexity of the scale

filter from O(n log n) to O(3(n log n)). To ensure prac-

tically feasible operations, we use a smaller template size

(i.e., 64×n) for the scale filter, Rs. The smaller template

size does not degrade the tracking performance because of

1) zero padding around the target (smaller ROI) and 2) us-

age of color-naming features.

EnKCF with Deep Convolutional Features In addition

to hand-crafted features, we explore deep convolutional fea-

tures to extend the applicability of the EnKCF and boost

tracking performance.

There has been a large volume of studies on utilizing

a pre-trained CNN features for tracking-by-detection algo-

rithms. For example, [5] used the activation of the first

and second convolutional layer of the VGGNet [21]. They

reported that the first convolutional layer features lead to

slightly better precision and success rates than the sec-

ond layer due to increased invariance for translation in this

layer. [17] proposed a KCF tracker integrating features with

higher abstraction capacity. Their method, firstly used the

third convolutional layer features to estimate the response

map. In the next step, the KCF, concentrating on the sec-

ond convolutional layer features, ran to update transition.

The third KCF then worked on the transition given by the

previous KCF, and learned the first convolutional layer fea-

tures to update the transition. This coarse-to-fine translation

estimation accommodates different levels of abstractions of

the object. However, their method runs multiple KCFs in a

sequential fashion, increasing the run-time complexity. For

this reason, we follow an approach similar to [5], in order

to embed deep features in EnKCF. The EnKCF algorithm

enables us to exploit different level of feature encodings

with different KCFs. The translation filters, RL
t and RS

t ,

consider at least twice bigger area than the scale filter, Rs.

Given this, we can assign deeper feature encodings to Rs as

it learns less spatial information than RL
t and RS

t . Thus we

assign the activation of the fourth convolutional layer fea-

tures (26×26×128) to Rs whereas RL
t and RS

t are assigned

the activation of the second layer features (109×109×64).

Figure 5 illustrates this feature assignment. Additionally,

we assign the second convolutional layer features to Rs as

in RL
t and RS

t and compare this setting (conv222-VGG) to

conv224-VGG, where the conv222 setting represents the as-

signment of the activation of 2th convolutional layer fea-

tures of VGGNet to RL
t , RS

t and Rs. We use the VGGNet

since it provides higher spatial resolution at the first several

layers than AlexNet [15].
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Figure 5: The proposed conv224-VGGNet feature extrac-

tion in DeepEnKCF. RL
t and Rs

t used an hanning window to

avoid distortion caused by FFT operation whereas Rs does

not, in order to avoid target boundary information loss.

Particle Filter for Smoothing Transition among
KCFs As explained earlier, the EnKCF updates the target’s

scale at every other k frames. Although the strategy of up-

dating every other kth frames will result in an optimal run-

time performance, this may lead drifts at the later frames.

To prevent such potential drifts, we developed a Bayes filter

that incorporates a target’s motion to smooth any interme-

diate outputs from individual KCFs. In particular, we use a
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particle filter to estimate the target’s image coordinate based

on the EnKCF’s outputs. The state in this paper, Xt, rep-

resents the target’s pixel coordinates and its velocity, Xt =
{x, y, vx, vy}, where x and y are the pixel coordinates of

the target’s centroid, vx and vy are the velocities estimated

along the x-axis and y-axis. The particle filter predicts, us-

ing a motion model with constant acceleration assumption,

the target’s next state by generating a predefined number of

particles. Then it uses the confidence maps of EnKCF as

observation to update its state. The particle weight is com-

puted as, wpt
(xt, yt) =

∑N
i=1

∑M
j=1 yR(xt − i, yt − j),

where wp is the weight of the particle p at time t, yR is the

response map from one of the KCFs, and N and M denote

the number of rows and columns of the confidence map.

3. Experiments
So far we explained how the proposed algorithm could

efficiently perform a single-target tracking task while ef-

fectively addressing variations in scale and translation of

moving objects. To accurately evaluate the performance of

the proposed algorithm from the perspective of this paper’s

goal, we need data with challenging variations in scale and

translation. To this end, we chose the UAV123 data1[19]

that contains 123 video sequences of objects captured from

low-altitude UAVs. Because of the nature of the video ac-

quisition – the targets and the camera are moving together,

this data pose a great deal of challenges as the scale and

position of the targets change drastically in most of the se-

quences. To verify that our algorithm is useful not only

for the image data with such extreme challenges but also

for the one with nominal difficulties in single-object track-

ing, we also used the OTB100 data2 [25] that contains the

videos recorded from smart phones and typical cameras in

perspective view. In addition, we use the temporarily down-

sampled UAV123 dataset to check how robust our algorithm

is to drastic motions of camera and moving targets. Lastly,

we evaluate the proposed algorithm with deep convolutional

features on the UAV123 dataset to investigate how much

performance gain we can achieve in using deep features

over the conventional features like fHoG and color-naming.

Finding Optimal Hyper-parameters As each of three

KCFs in EnKCF is designed to address specific challenges

in single target tracking problem, the optimal parameters

for individual KCFs should be different. We set the learn-

ing rates (β) of individual filters, RL
t , RS

t , and Rs as 0.020,

0.020 and 0.010. For the kernel of the Gaussian neighbor-

ing function, we empirically found the optimal values of

α as 0.7, 0.6, and 0.9 for RL
t , RS

t , and Rs. We set the

scale filter update threshold, TRs , to 4, peak-to-sidelobe

1https://ivul.kaust.edu.sa/Pages/
Dataset-UAV123.aspx

2http://cvlab.hanyang.ac.kr/tracker_benchmark/
benchmark_v10.html

(PSR) ratio. The padding size for the correlation filters is

tuned to 2 for RL
t , 1.50 for RS

t , and 0 for Rs. For our

particle filter implementation, we empirically found 1,000

for the number of particles as an optimal one for balancing

the run-time performance and accuracy. To keep the level

of variance among the particles reasonable, we performed

the re-sampling only when the efficient number of samples,

N̂eff ≈ (
∑P

p=1 w
2
p)
−1, is lower than a pre-defined thresh-

old.

Performance on UAV123 Dataset We used the preci-

sion and success rates to compare the performance of the

proposed algorithm with those of the state-of-the-art track-

ing algorithms. For the precision, we rank the trackers

based on the precision numbers at 20 pixels whereas in the

success rate plots, they are ranked by the area under curve

(AUC) scores. The tracking algorithms under the compari-

son include ones at high-speed (≥300 fps): KCF [12], CSK

[11], DCF [12], MOSSE [2], and STC [26] and ones at rel-

atively lower-speed (≤50): ECO [4], CCOT [7], SCT [3],

SAMF [16], DSST [6], Struck [10], MUSTER [13], TLD

[14], and OAB [27]. The ECO and CCOT trackers origi-

nally use deep convolutional features, however, to perform

fair comparison, we use fHoG and color-naming features

similar to our tracker. Figure 6 shows the results on the

UAV123 dataset. The EnKCF outperformed other high-

speed trackers by 3%-15% at 20 pixels precision. In partic-

ular, three algorithms, SAMF, DSST, and Struck did about

5% better than ours in accuracy, but 10-20 times slower.

The more recent trackers, ECO and CCOT, on the other

hand, outperforms EnKCF by 15% while running at 10-15

times slower. For the scale adaptation, EnKCF did fourth

best in terms of AUC for the success rate plot. It out-

performed other high-speed trackers by about 20%-25% in

AUC. In addition, it performed even better than some of the

lower-speed trackers. For example, for AUC, EnKCF out-

performed Struck and DSST by 5% and 10% while running

at more than 10 and 30 times faster. For the DSST, we be-

lieve our algorithm outperformed it because, first of all, the

DSST uses a 1-D scale filter and searches the target’s scale

over 33 candidates in a scale pool whereas our algorithm

uses a 2-D scale filter with 3 candidate scales. Learning

a 2-D filter resulted in learning more spatial information.

Second of all, the DSST uses only fHoG whereas our algo-

rithm uses both fHoG and color-naming features. Learning

complementary features such as color and shape provided a

better understanding of the ROI.

Finding Optimal Combination and Deployment Or-
der of Multiple KCFs In addition to performance compar-

ison with other trackers, we also conducted an experiment

to see what combination and deployment order of the KCF

works best. Table 1 presents results of this experiment. To

achieve fair comparison, we did not use the particle filter.

The combination presented at the 2nd column switched the
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Figure 6: Comparison of EnKCF’s performance with other trackers on the UAV123 and OTB100 datasets.

— Best — 2nd Best — 3th Best

Method EnKCF RS
t +RL

t +Rs RL
t +Rs RS

t +Rs RL
t * RS

t * RL
t +Rs* RS

t +Rs* RL
t +RS

t +Rs*

Pr. (20px) 53.9 48.93 52.41 48.10 51.88 51.29 55.85 52.14 58.16

SR (50%) 40.2 36.75 38.23 36.04 35.12 34.43 39.89 38.51 41.58

FPS 416 412 370 425 365 384 135 151 99

Table 1: Results of running different combinations of the KCFs for UAV123 dataset. The ’∗’ represents a sequential approach

where multiple KCFs are, in the given order, applied to every frame like in LCT [18].

order of deploying RL
t and RS

t . The one at the 3th column

removed RS
t and replaces with RL

t whereas the one at the

4th column removes RL
t . The combinations with the “*”

marker ran the filters on every frame in the listed order. The

trackers at the 7th and 8th columns ran a translation and

a scale filter on every frame which is similar to the LCT

tracker [18].3 This experiment empirically verified that the

way EnKCF uses multiple KCFs is optimal, in terms of both

tracking accuracy and run-time performance. For example,

one could achieve 4.26% higher in accuracy by running RL
t

and RS
t , and Rs at every frame (produced 58.16% for preci-

sion at 20 pixels), but this combination decreases run-time

performance to 317 fps (=416fps - 99fps).

Evaluation on Particle Filter Contribution For the

UAV123 dataset, we also evaluated the performance of the

EnKCF with and without the particle filter. In particular, we

use 50 video sequences with no drastic camera motion. To

evaluate the robustness of particle filter, we add noise from

a uniform distribution ([−20, 20]), to the translation estima-

tions of the KCFs. For this experiment, the EnKCF with

particle filter achieves 51.98% precision at 20 pixels, out-

performing the one without particle filter by 6.32%. This

experiment validated that the integration of particle filter

into the EnKCF can further improve the performance.

Performance on OTB100 Dataset Figure 6 shows the

results on the OTB100 dataset. The performance of EnKCF

on the OTB100 data is similar to that of the UAV123

dataset. Specifically, it performed reasonably well at esti-

3To be precise, the LCT tracker comes with a re-detection module for

a long-term tracking.

mating target scale in that it showed the highest precision

and success rates among the other high-speed trackers. In-

terestingly, EnKCF outperformed another correlation filter

based tracker, DSST, but performing 5% behind of another

low-speed scale adaptive SAMF tracker. Finally, the ECO,

and CCOT achieve 15%-20% higher precision and success

rates than ours while operating at 10-20 times slower rates.

Performance on UAV123 10fps Dataset We were cu-

rious about how the frame rate of a testing video would

affect the performance of a tracking algorithm. To this

end, we use the temporarily down-sampled version of the

UAV123, called UAV123 10fps dataset. The downsampling

of a given video sequence would obviously make the orig-

inal UAV123 data more challenging because the displace-

ments of the moving objects become bigger. To tackle this

challenge, we slightly modified the proposed algorithm –

ran RL
t every frame and removed the particle filter due to

larger motion. Figure 7 shows the performance of the mod-

ified version of EnKCF and other tracking methods. The

precision rates of the ECO and CCOT dropped about 10%
in comparison to the original UAV123 dataset. Our tracker

outperforms other high-speed correlation filter based track-

ers including KCF, DSST by about 15%-20% and showed

a precision rate similar to that of SAMF. It ranks as fourth

in AUC while running about 10 to 100 times faster than the

top three trackers. It was interesting to observe how sen-

sitive the performance of the state-of-the-art tracking algo-

rithms is to the frame rate, and, with a slight modification,

the proposed method effectively handled large displacement

of objects in successive frames.
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Figure 7: Comparison of a modified EnKCF’s performance

with those of the state-of-the-art tracking algorithms on a

lower frame rate data.

Evaluation with Deep Features Our focus so far was

to develop a single-target tracker that does not require of-

fline learning to effectively address the variations in scale

and translation, and can run at a high-speed, ≥ 300fps.

We would like to see how much the performance gain we

could achieve by replacing the conventional features, fHoG

and color-naming with deep convolutional features. We use

deep convolutional features similar to [5, 17]. Note that

running the EnKCF with deep features would obviously in-

crease the computational cost and degrade the run-time per-

formance.

Figure 8 shows the DeepEnKCF’s performance on

UAV123 dataset. DeepEnKCF outperformed the EnKCF

with hand-crafted features by about 3% to 5% in precision

(20 px) and 2% in success rates (AUC). The conv224-VGG
setting performed slightly better than the conv222-VGG in

precision while achieving similar success rate (AUC). This

indicates that higher level feature abstraction works better

for the smaller ROIs. By using feature abstractions from

the VGGNet pre-trained on millions of images, we can bet-

ter represent the low level features of the object than hand-

crafted features in challenging cases such as low contrast

ROIs. However, we believe that the contribution of the deep

features is limited by two factors: increased translational

invariance in deeper layers and losing targets due to large

target and camera motion in the UAV123 dataset.

4. Conclusion

Running a computer vision algorithm on any existing

embedded systems for real-world applications is econom-

ically and practically very attractive. Among other practical

considerations, it would be desirable if such computer vi-

sion algorithms require no offline training and operate at

high-speed. To develop a single-target tracking algorithm

to meet these properties, we proposed an extension of KCF

that applies three KCFs, in turn, to address the variations

in scale and translation of moving objects. We also devel-
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Figure 8: Comparison of EnKCF’s (fHoG + color-naming)

performance with DeepEnKCF on the UAV123 dataset.

The frame rate of the DeepEnKCF (conv224) was, on av-

erage, 30.74 fps and the conv222 setting was 35.23 fps on a

CPU.

oped a particle filter to smooth the transition between three

KCFs, especially the transition between the scale and large

ROI translation filter. Through experiments, we found that

the way the EnKCF deployed three KCFs was optimal, and

the particle filter contributed to increase the performance.

We used two public datasets to evaluate the performance

of the proposed algorithm and other state-of-the-art track-

ing algorithms, and found that, on average, the performance

of the proposed algorithm is better than other high-speed

trackers over 5% on precision at 20 pixels and 10-20% on

AUC. Our implementation ran at 340 fps for OTB100 and

at 416 fps for UAV123 data that is faster than DCF (333

fps) for OTB100 and KCF (296 fps) for UAV123. Finally,

we explored the idea of utilizing deep features for the pro-

posed algorithm and found that the deep features helped the

proposed algorithm boost the performance by 5%.

Although the proposed algorithm showed a promising

result for the challenging data, we believe the corner case

analysis has not been extensively done yet. As future work,

we would like to thoroughly study under what conditions

our algorithm would fail to track objects. In addition, we

also would like to investigate, for long-term tracking, a way

of re-initializing a target when the target is lost, due to oc-

clusion, illumination change, drastic camera motion, etc.
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